Incompressibility of orthogonal Grassmannians of rank 2

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incompressibility of Orthogonal Grassmannians

We prove the following conjecture due to Bryant Mathews (2008). Let Q be the orthogonal grassmannian of totally isotropic i-planes of a non-degenerate quadratic form q over an arbitrary field (where i is an integer satisfying 1 ≤ i ≤ (dim q)/2). If the degree of each closed point on Q is divisible by 2 and the Witt index of q over the function field of Q is equal to i, then the variety Q is 2-i...

متن کامل

Incompressibility of Generic Orthogonal Grassmannians

Given a non-degenerate quadratic form over a field such that its maximal orthogonal grassmannian is 2-incompressible (a condition satisfied for generic quadratic forms of arbitrary dimension), we apply the theory of upper motives to show that all other orthogonal grassmannians of this quadratic form are 2-incompressible. This computes the canonical 2-dimension of any projective homogeneous vari...

متن کامل

Embeddings of Orthogonal Grassmannians

In this paper I survey a few recent results on projective and Veronesean embeddings of orthogonal Grassmannian and propose a few conjectures

متن کامل

Incompressibility of Products by Grassmannians of Isotropic Subspaces

We prove that the product of an arbitrary projective homogeneous variety Y by an orthogonal, symplectic, or unitary Grassmannian X is 2-incompressible if and only if the varieties XF (Y ) and YF (X) are so. Some new properties of incompressible Grassmannians are established on the way.

متن کامل

Quantum Cohomology of Orthogonal Grassmannians

Let V be a vector space with a nondegenerate symmetric form and OG be the orthogonal Grassmannian which parametrizes maximal isotropic subspaces in V . We give a presentation for the (small) quantum cohomology ring QH∗(OG) and show that its product structure is determined by the ring of P̃ -polynomials. A ‘quantum Schubert calculus’ is formulated, which includes quantum Pieri and Giambelli formu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2012

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2011.08.032